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X-ray crystal structures are available for 29 eukaryoticmicro-
somal, chloroplast, ormitochondrial cytochromeP450s, includ-
ing two non-monooxygenase P450s. These structures provide a
basis for understanding structure-function relations that
underlie their distinct catalytic activities. Moreover, structural
plasticity has been characterized for individual P450s that aids
in understanding substrate binding in P450s that mediate drug
clearance.

Structural characterization of eukaryotic membrane cyto-
chrome P450s has focused largely on human cytochrome P450s
because of their importance in humanhealth.HumanP450s are
either specialists that exhibit highly conserved functions in ver-
tebrate species or generalists that facilitate metabolic clearance
of structurally diverse compounds to reduce toxic exposures,
although in some cases, mutagenic or more toxic metabolites
are produced. Genes encoding generalist P450s vary between
closely related species, leading to functionally distinct en-
zymes (1, 2). P450s are identified by a family number, subfamily
letter, and either a shared number for orthologs in different
species or a unique number for paralogs. Family and subfamily
designations reflect �35% and �70% amino acid sequence
identity, respectively.Orthologs typically exhibit 70%or greater
sequence identity. There are 57 genes encoding human P450s
comprising 18 families, including 35 genes for predominantly
generalist P450s in families 1–4.

Common Features of Membrane P450 Structures

The catalytic domain of �460 amino acids folds into a trian-
gular prism shape (Fig. 1A) that is similar to that of soluble
prokaryotic P450s (3). Twelve �-helices first identified for the
structure of soluble prokaryotic 101A1 (4) are designated by
letters A–L. Additionally, there is a highly conserved �-sheet
domain near the N terminus of the protein. The number of
helices is typically larger, but these helices are less conserved
(Fig. 1). Spatial conservation is highest for the structural core of
the protein and diverges most for the substrate-binding site
(5, 6).
The heme prosthetic group is the catalytic center of the

enzyme, where a reactive hypervalent oxo-iron protoporphyrin

IX radical cation intermediate is formed for subsequent inser-
tion of the iron-bound oxygen atom into a substrate bond (7).
Substrates bind in a cavity or cleft above the surface of the heme
in proximity to the reactive intermediate (Fig. 1). The thiolate
side chain of a conserved cysteine binds to the axial coordina-
tion site of the iron opposite to the bound oxygen, giving rise to
the unique spectral and functional properties of P450 enzymes.
Most P450s are monooxygenases, and electrons for reduc-

tion of the heme and subsequently the oxygen substrate are
provided by protein partners that bind to the face of the protein
proximal to the heme (8–11). Reduced adrenodoxin (12), a sol-
uble Fe-S protein, serves as the reductant for vertebrate mito-
chondrial P450s, and in turn, it is reduced by the flavoprotein
NADPH-adrenodoxin oxidoreductase. A structure of mito-
chondrial 11A1 crystallizedwith a tethered adrenodoxin bound
to its proximal surface reveals the binding interaction between
the proteins (10). Microsomal NADPH-cytochrome P450 oxi-
doreductase, which has an FMN and an FAD domain, provides
two electrons for reduction of oxygen by microsomal P450s.
The microsomal reductase has been crystallized in a closed
form in which the flavodoxin-like FMN domain is positioned
for reduction by the FAD domain (13) and in amore open form
in which the FMN domain is more accessible for interaction
with the proximal face of the P450 (8, 14, 15).Microsomal cyto-
chrome b5 can also serve as a donor of the second electron, and
interactions between cytochrome b5 and P450s can modulate
rates and product profiles (16).
Helices C, D, and I–L, together with �-sheets 1 and 2, com-

prise the structural core that forms portions of the heme-bind-
ing site and the proximal surface where protein partners bind.
Helix F-G, helix B-C, and theN- and C-terminal regions, which
form the outer boundaries of the substrate-binding cavity, are
more dynamic and exhibit more varied secondary and tertiary
structures (Fig. 1). The flexibility of this architecture was first
demonstrated for P450 102A1, which exhibited an open chan-
nel to the active site when crystallized without a substrate (17)
and a closed form when a substrate was bound (18). Several
solvent access channels (Fig. 2) that can expand, contract, and
merge for substrate access and product exit have been defined
from structures and molecular dynamics studies (19).

Membrane Binding

Microsomal P450s are targeted to the endoplasmic reticulum
by an N-terminal leader that includes a transmembrane helix
(Fig. 2) that is linked by a polar connector to the catalytic
domain, which is sequestered to the cytoplasmic side of the
membrane (20). With the exception of 19A1 (21), microsomal
P450s have been expressed for structure determinations with-
out their N-terminal leader sequences, as described initially for
rabbit microsomal 2C5 (3, 22). The hydrophobic surfaces of
helices A�, F�, and G� of microsomal P450s provide additional
interactions with the membrane surface (3, 22–25). Helices F�
and G� are not typically seen in prokaryotic P450s, and they are
formed by a longer polypeptide chain connecting helices F and
G in eukaryotic membrane P450s. Helix F� resides between
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�-sheet 1 and the helix B-C loop and above a heme propionate.
Inmembrane P450s, this heme propionate is usually positioned
below the plane of the heme, which increases space below helix
F�, whereas in soluble prokaryotic P450s, this propionate typi-
cally resides above the plane (26). The leader sequences target-
ing family 11, 24, and 27 P450s to mitochondria are cleaved
upon import (27, 28), andmembrane binding to thematrix side
of the inner membrane is likely to reflect interactions of the
hydrophobic external surfaces of helices A� and G� with the
membrane (Fig. 2) (29, 30).
Interactions of helices A�, F�, and G� with the membrane

suggest that some substrate access channels are likely to open
into the membrane, whereas those that open on sides of the
active site and under the helix F-G region will open to the cyto-
sol (Fig. 2).Molecular dynamics studies ofmicrosomal 2C9 (31,
32) and 3A4 (26) in solution and bound to phospholipid bilayers

indicate that the opening and closing of solvent channels can be
modulated by such interactions comparedwith simulations in a
homogeneous aqueous medium.

Specialist Enzymes

Mitochondrial enzymes are specialists that generate specific
products that fulfill their physiologic functions. Mitochondrial
11A1 catalyzes the first step in steroid hormone synthesis by
successive oxygenations that result in scission of the C21–C22
bond of cholesterol to form pregnenolone and isocaproalde-
hyde. Structures of 11A1 co-crystallized with cholesterol and
with the two intermediate products, (22R)-hydroxycholesterol
(Fig. 2B) and (22R,20R)-dihydroxycholesterol, bound in the
active site (10) indicate that the sterol ring system is positioned
under helix F�, with the side chain positionedwith C22 andC20
in close proximity to the heme iron for each substrate. A struc-

FIGURE 1. P450 fold and elements comprising the active site. A, the overall
topology is illustrated by the structure of microsomal 2C8 (Protein Data Bank
code 2NNI), colored from blue at the N terminus to red at the C terminus. The
active site cavity is shown as a transparent surface. The bound substrate, mon-
telukast (violet carbons), and the heme prosthetic group (gray carbons) are
shown as stick figures. Twelve helices designated by letters and �-sheets 1
and 2 are highly conserved. Additional helices that are named by letters with
primes or double primes are evident. B, two views of structural components
that form the sides of the substrate-binding site of 2C8. The helix F-G region
(green) forms the top of the cavity and is cantilevered over helix I (yellow),
which forms one side. The opposite side is formed by connections (orange)
between helix K and �-strands 1–3 and between �-strands 1– 4 and helix K�
near the surface of the heme and by the N-terminal region (dark blue) that
includes helix A and �-strand 1. The gaps under the helix F-G region between
helix I and the N-terminal region are filled by the C-terminal loop (red orange)
as shown in the left panel and by the B-C loop (light blue) as shown in the right
panel. C, views of the helix F-G side of the microsomal 1A2 complex with
�-naphthoflavone (left) and of the B-C loop side of the microsomal 3A4 com-
plex with ritonavir (right) illustrate differences in the topologies of the active
sites and the secondary and tertiary structures of 2C8 (code 2NNI), 1A2 (code
2HI4), and 3A4 (code 3NXU).

FIGURE 2. Interactions of microsomal (A) and mitochondrial (B) P450s
with the membrane. A, Fig. 5A from Cojocaru et al. (32) reproduced here
under the terms of the Creative Commons Attribution License. A model of
microsomal 2C9 (ribbon) embedded in a 1-palmitoyl-2-oleoylphosphatidyl-
choline bilayer (thick and thin gold sticks) is depicted. The colored tubes rep-
resent solvent access channels that were observed to open and, in some
cases, close during molecular dynamics simulations and are labeled accord-
ing to the nomenclature of Cojocaru et al. (19). The region between helices F
and G is designated FG. B, Fig. S6 from Mast et al. (33). Structures of 11A1 (blue;
Protein Data Bank code 3MZS) and 24A1 (pink; code 3K9V) are shown. The
upper surface of the membrane bilayer with respect to 11A1 is indicated by
the gray line. The membrane insertion sequences are colored cyan in 11A1
and magenta in 24A1. Secondary structural elements that participate in
adrenodoxin binding are colored green. 22-Hydroxycholesterol is shown in
yellow; heme is shown in red in 11A1 and brown in 24A1.
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ture determined for the bovine 11A1 (22R)-hydroxycholesterol
complex (33) indicates that this substrate-binding site is highly
conserved. Mitochondrial 24A1 catalyzes a similar reaction
that cleaves the side chain of calcitriol to inactivate the hor-
mone. A structure of rat mitochondrial 24A1 crystallized in the
absence of its substrate exhibits an open substrate-binding cleft
between helices A� and F�, and when calcitriol binds, the cleft is
likely to close and resemble structures of 11A1 (Fig. 2B) (30).
Cholesterol 3-sulfate binds in a similar way in a structure of
microsomal 46A1, with the side chain positioned for hydroxy-
lation of C24. This is an important reaction for the clearance of
excess cholesterol from the brain. Interestingly, the substrate-
free structure of 46A1 exhibits a much different cavity shape
(34), and the 46A1 active site adapts to bind several structurally
unrelated inhibitors (35, 36). In contrast, structures of micro-
somal 2R1 (37) indicate that the secosterolmoiety of vitaminD3
and related compounds is bound between helices I and G and
the helix B-C loop. This positions the side chain for 25-hy-
droxylation, which is the first step in the conversion of vitamin
D3 to calcitriol.

The sterol ring system is positioned much differently in a
structure of microsomal 7A1 (Protein Data Bank code 3SN5),
where cholest-4-en-3-one resides above the heme propionate
side chains, with the plane of the sterol rings parallel to the
heme plane. The site of metabolism, C7, is positioned closest to
the heme iron. Hydroxylation at C7 is the rate-limiting step in
bile acid formation from cholesterol. Similarly, a structure of
the human aromatase, microsomal 19A1, crystallized with
androstenedione (21) indicates that the long axis of the steroid
is almost parallel to the heme plane, with the 19-methyl group
positioned for reaction with the reactive intermediate. Estro-
gens are formed by three successive oxygenations at C19, which
leads to elimination of formic acid and to aromatization of ring
A (38). A structure of 19A1 complexed with exemestane, an
inhibitor used clinically to reduce estrogen formation in breast
cancer patients, led to the synthesis of new inhibitors with
increased potency (39).
Similarly, inhibitors of microsomal 17A1 are used to inhibit

androgen formation to treat prostate cancer. The first step of
androgen biosynthesis is 17�-hydroxylation of pregnenolone,
which is followed by a second oxygenation that results in scis-
sion of the C17–C20 bond to produce androstenedione and
acetic acid. Structures of 17A1 were determined with a Food
and Drug Administration-approved first-in-class inhibitor
(abiraterone) and with another inhibitor (TOK-001) that is in
clinical trials (40). In this case, the long axis of the inhibitors is
almost perpendicular to the plane of the heme (40). A similar
orientation was observed for 17�-hydroxyprogesterone in a
structure of 21A2 (41). Microsomal 21A2 catalyzes the 21-hy-
droxylation of 17�-progesterone andprogesterone to formpre-
cursors for the synthesis of cortisol by 11B1 and aldosterone by
11B2, respectively. The binding of deoxycorticosterone to
mitochondrial 11B2 is similar to that of androstenedione in
19A1, but with C11 and the 18-methyl group placed near the
heme iron (42).
Interestingly, human microsomal 51A1 is an anti-target for

development of therapeutic inhibitors that target 51A1 in fun-
gal pathogens. Human 51A catalyzes the 14�-demethylation of

lanosterol, another carbon–carbon bond scission reaction, in
the pathway for de novo synthesis of cholesterol. It is antici-
pated that the availability of structures for human 51A1 (43)
and 51A1 orthologs in fungal pathogens (44–46) will aid in the
design of drugs that aremore selective for fungal 51A relative to
the human enzyme.

Isomerases and Other Non-monooxygenases

Humans express two specialist microsomal P450s (8A1 and
5A1) that catalyze the isomerization of prostaglandin H1 to
produce prostacyclin and thromboxane, respectively. Struc-
tures of human (47) and zebrafish (48) 8A1 in the ligand-free
state have been determined, and conserved characteristics of
the active site architectures were noted (48). U51605, a sub-
strate analog with nitrogens substituted for the endoperoxide
oxygens, binds with the C11 nitrogen coordinated to the heme
iron (48). This is consistent with the proposed initial binding of
the C11 oxygen of the endoperoxidemoiety to the heme iron to
initiate the isomerase reaction (49). The C9 nitrogen exhibits a
hydrogen bond with the side chain of Asn-277 on helix I of 8A1
(48). This asparagine is conserved in plant non-monooxyge-
nases of the CYP74 family, such as chloroplast allene oxide
synthase, in which the corresponding asparagine is thought to
facilitate conversion of lipid peroxides to allene oxides (50).
These studies also noted that alterations in the proximal surface
would likely prevent interactions with electron donors for P450
monooxygenases (48, 50).

Carcinogen-metabolizing Enzymes

Each generalist P450 transforms a wide range of lipophilic
substrates to more polar compounds to enhance elimination.
Unfortunately, P450s can also transform procarcinogens to
direct acting mutagens. Six microsomal P450s (1A1, 1A2, 1B1,
2E1, 3A4, and 2A6) account for �90% of known carcinogen
activation pathways (51). Structures of 1A1 (Protein Data Bank
code 4I8V), 1A2 (52), and 1B1 (53) co-crystallized with the
inhibitor �-naphthoflavone (272 Da) indicate that their active
sites are narrow, with large hydrophobic surfaces suitable for
binding polynuclear aromatic hydrocarbons (Fig. 1). A bend in
helix F reinforces the narrow cavities. Interestingly, amino acid
residues that line these cavities are conserved in other species,
which is likely to reflect persistent environmental exposure to
these compounds during evolution. In contrast, sequence con-
servation is much less evident for portions of the polypeptide
chains that form the active site surfaces of family 2 P450s. This
was first predicted from sequence alignments with the primary
and tertiary structures of bacterial 101A1 (54) and confirmedby
structure determinations.
The active site cavity of the principal enzyme for nicotine

clearance (2A6) co-crystallized with coumarin (146 Da) (55),
with nicotine (162 Da) (56), and with several inhibitors (55, 57)
is smaller than that of family 1 P450s. Relatively small differ-
ences in rotamer and backbone conformations are evident for
these complexes. A somewhat larger and more plastic active
site relative to 2A6 is evident for 2A13, which ultimately con-
verts nicotine and cotinine to carcinogenic nitrosamines such
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as nicotine-derived nitrosamine ketone (NNK2; 4-(methylni-
trosamino)-1-(3-pyridyl)-1-butanone) in lung tissues (56, 58).
Microsomal 2E1 co-crystallized with indazole (118 Da) and

4-methylpyrazole (82 Da) exhibits the smallest cavity (59). The
active site expands when C8, C10, and C12 fatty acids with an
azole ring attached to the terminal carbon are bound. The azole
group coordinates to the heme and positions the terminal ali-
phatic carbon of the fatty acid constituent tomimic the position
for �-hydroxylation. A minor shift in the position of Phe-298
on helix I allows the carboxylate moieties to reside in an adja-
cent cavity between helices I, F, andG and increases the volume
of the active site from �190 Å3 for indazole to 420–490 Å3 for
the C8–C12 compounds (60). Structures of 2E1, 2A6, and 2A13
co-crystallized with pilocarpine reveal conformational changes
and differences in binding interactions (61).

Drug-metabolizing Enzymes

Drug clearance pathways mediated by P450s can be a formi-
dable barrier to the development of orally available new drugs.
Structures of drug-metabolizing P450s can be used to improve
predictions of sites of metabolism and provide information for
drug redesign to overcome metabolic barriers to improve effi-
cacy or to reduce the likelihood of drug-drug interactions (62–
65). Hepatic clearance of drugs by P450-mediated metabolism
is the most prevalent pathway for elimination of the 200 most
prescribed drugs and is attributed in order of frequency to
microsomal P450s 3A4, 2C9, 2D6, 2C19, 1A2, 2C8, and 2B6
(66). With the exception of 2B6, structures of these enzymes
exhibit active site cavities that are larger than that of 1A2 and
that are more open and pliant.
3A4 structures differ from family 1 and 2 structures because

helices F and G do not extend across the active site cavity (Fig.
1). In 3A4, the “roof” above the heme is formed by a cluster of
phenylalanine side chains. These phenylalanine side chains
expand outward relative to the ligand-free structure (67, 68) to
accommodate erythromycin (734 Da) (69), ritonavir (721 Da)
(70), desthiazolylmethyloxycarbonyl ritonavir (580 Da) (71), or
two molecules of ketoconazole (531 Da) stacked antiparallel
and vertically above the heme (69). In contrast, bromoer-
gocryptine (656Da) elicits only small changes relative to ligand-
free structures when bound (72). Co-crystallization of proges-
terone with 3A4 identified a peripheral binding site for the
steroid near the outer surface of helices F� and G� and the phe-
nylalanine cluster (68). 3A4 often exhibits homo- and hetero-
tropic activation kinetics with progesterone and other sub-
strates of similar size that are consistent with the binding of two
or more molecules to the enzyme (73, 74). Biophysical studies
have suggested that two molecules can stack in the active site
(75), as seen for the 3A4 structure with two molecules of keto-
conazole (69), and have provided evidence for a peripheral
binding site such as that observed for progesterone (76).
The active site cavity of 2C8 is large but has a more serpen-

tine shape than that of 3A4 (Fig. 1). The cavity readily accom-
modates montelukast (586 Da) or two molecules of 9-cis-reti-
noic acid (300 Da). The lower portion of the cavity projects
from the heme iron toward the open entrance to the active site

on the N-terminal side of the B-C loop under helix F�. This arm
is occupied by one retinoic acid molecule, with its carboxylate
in the entrance channel and the trimethylcyclohexenyl ring
positioned for hydroxylation. The distal molecule is stacked
above the proximal molecule, with the carboxylate in a second
entrance on the C-terminal side of the B-C loop, where it forms
an ionic bond with Arg-241 on helix G, and its trimethylcyclo-
hexenyl ring is stacked above the midpoint of the proximal ret-
inoic acid. The two arms of the cavity complement the shape of
montelukast, which exhibits three large groups attached to a
chiral carbon (Fig. 1). In contrast, felodipine (384 Da) and tro-
glitazone (442 Da) occupy only a portion of the cavity (77). The
structure of the enzyme crystallized in the absence of a ligand
(78) does not differ greatly from that of the ligand complexes
(77). This apparent rigidity could reflect the presence of a fatty
acid bound to the exterior surface of 2C8, with the aliphatic
chain passing through the turn formed by helices F�, G�, and G.
The location of this peripheral binding site is close to that
observed for progesterone in the structure of 3A4.
2C19 plays an important role in the clearance of omeprazole

(345 Da) and in the conversion of clopidogrel (322 Da) to its
therapeutic metabolite. The backbone conformation of 2C19
complexed with the inhibitor (2-methyl-1-benzofuran-3-yl)-
(4-hydroxy-3,5-dimethylphenyl)methanone is highly similar to
that of 2C8, but the cavity is divided into a smaller active site
and an antechamber under helix F�, which is likely to be part of
the substrate access channel. These differences between 2C8
and 2C19 arise fromextensive divergence in the amino acid side
chains that form the cavities of the two enzymes (79). The sep-
aration of the two cavities in 2C19 reflects a constriction
formedby the close approachof phenylalanines on theB-C loop
and in the turn of the C-terminal loop as seen for 2D6 (Protein
Data Bank code 3QM4) (Fig. 3A). This antechamber is not evi-
dent in P450s 1A, 1B, 2A, and 2E because this region is filled by
larger amino side chains.
Similarly, the antechamber is reduced in volume in rabbit

2C5 because the differences in the conformation of the F-F�
loop fill this space as they do in family 1 P450s (Fig. 1) and in the
substrate-free 2D6 structure (Protein Data Bank code 2F9Q)
(Fig. 3). Nevertheless, the corresponding phenylalanines ex-
hibit significant rotamer differences as well as changes in the
F-G region, the C-terminal loop, and the B-C loop when differ-
ent substrates are bound (80, 81).
Although 2C9 exhibits �90% sequence identity to 2C19, the

two enzymes make unique contributions to human drug
metabolism. 2C9 contributes extensively to the clearance of
small anionic compounds, and 2C9 genetic variation increases
risks for adverse effects of warfarin and phenytoin therapies.
The functional differences between 2C9 and 2C19 arise from
conformational differences due to amino acid differences that
reside outside the active site cavity but influence the architec-
ture of the 2C9 active site (79). The alternative conformation of
the 2C9 B-C loop positions the conserved Arg-108 in the active
site, where it forms an ionic bond with the carboxylate of flur-
biprofen in the 2C9 structure (Protein Data Bank code 1R9O).
This rearrangement alters both the polar properties and the
shape of the active site cavity and underlies the role of 2C9 in
the metabolic clearance of other small anionic drugs and the2 The abbreviation used is: NNK, nicotine-derived nitrosamine ketone.
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distinct contributions of the two enzymes to drug metabolism
(79, 82).
Two additional 2C9 structures (Protein Data Bank codes

1OG2 and 1OG5) determined for a construct with seven amino
acid substitutions in the helix F-G region to facilitate crystalli-
zation (83) exhibit much larger active site cavities than seen for
2C9 (code 1R9O) (82) or for 2C19 (79). This difference reflects
an elevation of the helix F-G region above the heme, a reposi-
tioning of the turn in theC-terminal loop away fromhelix I, and
an alternative conformation of the helix B-C loop that places
Arg-108 outside the active site in the 1OG2 and 1OG5 struc-
tures. S-Warfarin (308 Da) is bound in a distal portion of the
1OG5 structure of the 2C9 mutant, which was speculated to
serve as an effector site or possibly initial binding site (83). This
location corresponds to the antechamber seen in 2C19, and the
warfarin-binding site could reflect an initial binding site in the
entry way. A similar antechamber binds a second substrate
molecule in the structure of 21A2 (41). Similarly, one of two
molecules of NNK (207 Da) occupies a similar position in an
expanded 2A13 active site, with the other NNKpositioned near
the heme (56). In contrast, a 2A13 structure for an alternative
crystal form exhibits one molecule of NNK positioned for
metabolite formation in a small active site for six of eight mol-
ecules in the asymmetric unit. Interestingly, one of the two
remaining 2A13 molecules of the asymmetric unit exhibits an
open access channel under helix F and between the C-terminal
loop and helix I (56). This channel is also open in the 2F9Q
structure of 2D6 (Fig. 3A) crystallized in the absence of a ligand
(84).

In contrast, the 3QM4 structure of 2D6 complexed with pri-
nomastat (423 Da) exhibits a closed active site cavity that con-
forms closely to the size of prinomastat (85). Additionally, an
antechamber is evident in the structure of the prinomastat
complex below helix F�, similar to that seen in 2C19 (79) and
21A2 (41). There is a significant difference in the conformation
of the helix F-G region and neighboring portions of the two
structures, and the antechamber is filled in the 2F9Q structure
of 2D6 due to the alternative conformation of the helix F-G
region (Fig. 3B).
A second open structure of 2D6 (Protein Data Bank code

3TBG) was crystallized with thioridazine (371 Da) in the active
site, where it forms an ionic bondwithAsp-301 onhelix I.Many
substrates and inhibitors of P450 2D6 have basic nitrogens that
are positively charged at neutral pH and that are thought to
bind to either Asp-301 or Glu-216 in the active site (86). A
second thioridazine is bound in the antechamber of the 3TBG
structure. The constriction between the active site cavity and
the antechamber of the 3QM4 structure is relaxed to form a
continuous channel encompassing the two thioridazine mole-
cules that extends from the active site to the open entrance
between the helix F� and the helixA� regions in the 3TBG struc-
ture (Fig. 3A). The thioridazine in the entrance channel forms
an ionic bondwithGlu-222 on helix F�, suggesting thatGlu-222
could facilitate the initial binding of cationic substrates to 2D6.
Although binding of a secondmolecule in the entrance channel
could act as an effector, biochemical evidence to support this
notion has not been reported for 2D6 with thioridazine, 2A13
with NNK, or 21A2 with 17�-hydroxyprogesterone at enzyme

FIGURE 3. Alternative conformations of microsomal 2D6. A, the 3QM4 structure of 2D6 with prinomastat bound (green) exhibits a closed active site cavity
and an antechamber (black mesh surfaces) with an open 2b channel (arrow). The 3TBG structure of 2D6 with two molecules of thioridazine bound (slate)
displays a single open cavity with merged 2a, 2b, and 2f channels. The 2F9Q structure of 2D6 (pink) exhibits an open S channel. B, a side view of the overlaid
structures shows how conformational changes open the entrance channel in the 3TBG structure relative to the 3QM4 structure (double-headed arrow), whereas
the F-G loop fills the channel entrance in the 2F9Q structure.
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and substrate concentrations used to assess catalytic activity or
ligand binding, which are much lower than those used for
crystallization.
The structural flexibility required for opening and closing the

cavity can also enable the binding of larger inhibitors or alter-
native substrates in more open structural conformations. This
has been studied extensively in rabbit 2B4, which was first crys-
tallized in an open ligand-free form (87) and subsequently in
closed structures with 4-(4-chlorophenyl)imidazole (179 Da)
(88) and 1-(4-chlorophenyl)imidazole (179 Da) (89) bound in a
small active site cavity. A structure of human 2B6 exhibits a
remarkably similar active site when crystallized with 4-(4-chlo-
rophenyl)imidazole (90). Additionally, ticlopidine (264Da) and
clopidogrel (322 Da) complexes of 2B4 exhibit compact closed
structures (91), and more recently, ligand-free 2B4 was crystal-
lized in a closed conformation (92). Similarly, complexes of 2B6
with 4-benzylpyridine (169 Da) and 4-(4-nitrobenzyl)pyridine
(214 Da) are closed, and this is accompanied by small adapta-
tions (93). Systematic use of azole ligands of increasing sizewith
2B4, 1-biphenyl-4-methyl-1H-imidazole (234 Da) (94) and
bifonazole (310 Da) (95), produced a continuum of structures
from small and closed to larger and more open active site cav-
ities (96). 2B6 and 2B4 have also been crystallized with two
molecules of amlodipine (409 Da) in an expanded active site
channel (97).
Additionally, structures have been determined for covalent

adducts of 2B4 with reactive metabolites of the irreversible
inhibitors 9-ethynylphenanthrene (202 Da) (98) and tert-butyl-
phenylacetylene (176 Da) (99) covalently linked to Thr-302 by
an ester bond. The latter was crystallized in both the closed and
open conformations. An alternative rotamer of the adducted
residue opens the active site sufficiently to allow access of other
substrates and may underlie the residual activity of the enzyme
following adduction. Similarly, double occupancy of open con-
formations of P450s could underlie substrate-dependent differ-
ences in Ki values observed for drug-drug interactions.

Perspective

Structures determined for specialist P450s reveal adapta-
tions that underlie their unique physiologic roles, which require
precise positioning of the substrate to produce the appropriate
product. It is likely that structural characterization of human
P450s will be extended to include P450s in other physiologic
pathways as well as P450s targeted for prodrug activation in
tumors. Additionally, structural characterization of membrane
P450s in other species, including plants and insects, would
increase our understanding of the mechanisms of resistance to
pesticides and herbicides, and structures of critical P450s in
eukaryoticmicrobial pathogens could facilitate drug design tar-
geting these organisms. Structures determined for several gen-
eralist P450s indicate that conformational dynamics contrib-
utes to binding diverse ligands. Specialist P450s are also
structurally dynamic, as they must open and close for substrate
access and product egress. Their physiologic substrates form
strong interactions that reduce protein dynamics and increase
catalytic specificity and efficiency. The fit of adopted substrates
with generalist P450s is less exacting and likely leads to a greater
range of substrate and protein dynamics with associated reduc-

tions of catalytic efficiencies and metabolic specificities. Char-
acterization of conformational changes that occur when sub-
strates and inhibitors bind is likely to be extended to additional
generalist P450s, which will contribute to better in silico
approaches for understanding structure-activity relationships
that aid drug design. Additionally, advances in the application
of NMR spectroscopy for structural characterization of mem-
brane P450s could increase our understanding of the confor-
mational heterogeneity of membrane-bound P450s.
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